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Abstract 

This manuscript deals with the estimation of population mean of the variable under study using an improved 

ratio type estimator utilizing the known values of median and coefficient of variation of auxiliary variable. The 

expressions for the bias and mean square error (MSE) of the proposed estimator are obtained up to the first order 

of approximation. The optimum estimator is also obtained for the optimum value of the constant of the estimator 

and its optimum properties are also studied. It is shown that the proposed estimator is better than the existing 

ratio estimators in the literature. For the justification of the improvement of the proposed estimator over others, 

an empirical study is also carried out. 
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I. INTRODUCTION 
The simplest estimator for estimating 

population mean of the variable under study is the 

sample mean obtained by using simple random 

sampling without replacement, when the auxiliary 

information is not known in practice. The auxiliary 

information in sampling theory which is collected at 

some previous date when a complete count of the 

population was made is used for improved estimation 

of parameters thereby enhancing the efficiencies of 

the estimators. The variable which provides the 

auxiliary information is known as auxiliary variable 

which is highly correlated with the main variable 

under study. When the parameters of the auxiliary 

variable X such as Population Mean, Co-efficient of 

Variation, Co-efficient of Kurtosis, Co-efficient of 

Skewness, Median etc are known, a number of 

estimators such as ratio, product and linear regression 

estimators and their modifications have been 

proposed in the literature for improved estimation of 

the population mean of variable under study. 

Let (X , ), 1, 2,...,i iY i N be the N pair of 

observations for the auxiliary and study variables, 

respectively for the population having N distinct and 

identifiable units using Simple Random Sampling 

without Replacement technique of sampling. Let 

X and Y be the population means of auxiliary and 

study variables, respectively and x and y  be the 

respective sample means. Ratio estimators are used 

when the line of regression of y on x passes through 

origin and the variables X and Y are positively 

correlated to each other, while product estimators are 

used when X and Y are negatively correlated to each 

other, otherwise regression estimators are used. 

The variance of the sample mean ( 0t y ) 

of the variable under study which is an unbiased 

estimator of population mean is given by, 
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Cochran (1940) was the first person to use auxiliary 

Information for the estimation of population mean of 

the variable under study and proposed the usual ratio 

estimator as,  

R

X
t y

x

 
  

 
                                                  (1.1) 

The Bias and mean square error (MSE) of 

the estimator in (1.1) up to the first order of 

approximation are, respectively, as follows, 
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As an improvement over the traditional ratio 

estimator, a large number of modified ratio 

estimators using known Co-efficient of Variation, 

Co-efficient of Kurtosis, Co-efficient of Skewness, 

Median etc of auxiliary variable have been given in 

the literature. The lists of existing modified ratio 

estimators to be compared with the proposed 

estimator, are divided into two classes namely Class 

1 and Class 2, and are given respectively in Table 

1.1. and Table 1.2. The existing modified ratio 

estimators together with their biases, mean squared 

errors and constants available in the literature are 

presented in the following tables as given by 

Subramani and Kumarapandiyan [18],  

 

 

Table 1.1: Existing modified ratio type estimators (Class 1) with their biases, mean squared errors and their 

constants 

Estimator Bias Mean Square Error Constant i  
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Table 1.2: Existing modified ratio type estimators (Class 2) with their biases, mean squared errors and their 

constants 

Estimator Bias Mean Square Error Constant iR  
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II. PROPOSED ESTIMATOR 
Motivated by Prasad (1989) and Subramani 

and Kumarapandiyan (2012), we have proposed an 

efficient ratio estimator of population mean utilizing 

the known values of coefficient of variation and the 

median of auxiliary variable as, 
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where  is a suitable constant to be determined later 

such that the mean squared error of   is minimum.  
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estimators  (2.1) may be expressed as, 
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After simplifying and retaining terms up to the first 

order of approximation, we have,  
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Taking expectation along with using above results of 

(2.2), we have the bias of proposed estimator t  as,    
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Squaring both sides of (2.2), simplifying and taking 

expectation on both sides, up to the first order of 

approximation, we get the mean squared error of the 

proposed estimator as, 
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III. EFFICIENCY COMPARISON 
From (2.5) and (1.0), we have, 
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From (2.5) and the estimators of class 2, we have, 
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IV. NUMERICAL ILLUSTRATION 
To study the performances of the existing 

mentioned ratio type estimators given in class 1 and 

class 2 along with the proposed estimator, the 

following population, given in Murthy[5] at page 228  

has been take into account. The population 

parameters are as follows: 

Table 3: Parameters of different populations 

 

80N  , 20n  , 51.8264Y  , 2.8513X  , 0.9150  , 18.3569yS  , 0.3542yC  , 

2.7042xS  , 0.9484xC  , 1 1.3005  , 2 0.6978  ,  1.4800dM   

 

Table 4: Comparative representation of Biases and Mean Squared Errors of various estimators  

 

V. RESULTS AND CONCLUSION 
It has been shown theoretically as well as 

empirically that the proposed improved ratio type 

estimator of population mean of the study variable 

utilizing the known values of the coefficient of 

variation and the median of the auxiliary variable has 

lesser mean squared error than the existing estimators 

mentioned under class 1 and class 2, given in table 1 

and table 2 respectively. Therefore the proposed 

estimator should be preferred over above estimators 

given in table-1.1 and table-1.2 for the estimation of 

population mean in simple random sampling. 
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